
1

Oracle OLTP (Transactional) Load Testing

The document Introduction to Transactional (OLTP) Load Testing for all Databases provides a general

overview on the HammerDB OLTP workload and should be read prior to this database specific guide. This
guide gives you an introduction to conducting OLTP (Online Transaction Processing) workloads on the
Oracle Database and will equip you with the essentials for assessing the ability of any system that runs the
Oracle Database for processing transactional workloads. On completion of this guide you will be able to run
detailed and comprehensive Oracle load tests. After building a basic skill set, you should be able to take a
system from 'bare metal' to generation of a full performance profile within one day.

Database load testing is an advanced skill and therefore familiarity with the Oracle Database and basic
Oracle DBA skills are assumed. You should already be able to create, administer and connect to an Oracle
database. If you do not have these skills I recommend start with an Introduction to Oracle.

Test Network Configuration ... 1

Load Generation Server Configuration .. 2

SUT Database Server Configuration ... 2

Installation and Configuration ... 3

Load Generation Server Installation .. 3

Load Generation Server Configuration .. 3

SUT Database Server Installation ... 3

Network Connectivity .. 4

Creating the Test Schema ... 4

Build Options .. 6

Starting the Schema Build .. 7

Pre-Testing and Planning ... 13

Driver Options .. 14

Loading the Driver Script .. 18

Pre-Test 1 Verifying the Schema .. 19

Pre-Test 2 Single and Multiple Virtual User Throughput ... 25

Planning and Preparation ... 31

Running Timed Tests with the AWR Snapshot Driver Script .. 32

Automating Tests with Autopilot Mode ... 39

Support and Questions ... 47

Test Network Configuration

The database server to be tested is known as the System Under Test (SUT) installed and configured with the
Oracle database. This SUT may run on any chosen platform and does not have to be the same operating
system as the HammerDB client. You also require a load generation server to run HammerDB installed with
the HammerDB software and a compatible Oracle client. It is recommended to use the pre-configured
HammerDB software for 64-bit Linux or Windows. Typically the load generation server is run on a separate
system from the SUT with the load generated across the network. It is possible to run HammerDB on the

http://hammerora.sourceforge.net/transactionintro.pdf
http://download.oracle.com/docs/cd/B28359_01/server.111/b28318/intro.htm#g78401

2

same system as the SUT however this will be expected to produce different results from a network based
load. Both the SUT and the load generation server may be virtualized or container databases although
similarly results may differ from a native hardware based installation.

Note for Oracle on Microsoft Windows Users

If running Oracle workloads with HammerDB on Microsoft Windows (these issues DO NOT apply to Linux) it
is essential to be aware of 2 known Oracle bugs:

1. It is mandatory to UPDATE YOUR SQLNET.ORA file on your HammerDB Windows client to disable
the diagnosability infrastructure for Oracle Bug #12733000.

2. If running the 32-bit client on 64-bit windows Oracle bug #3807408 means you either need to apply

a patch on both client and server or move the installation from the default directory.

Please read the installation guide for instructions on how to make these changes.

 Load Generation Server Configuration

The most important component of the load generation server is the server processor. The overall load
generation server capacity required depends on the system capabilities of the SUT. It is recommend to use
an up to date multicore processor. HammerDB is a multithreaded application and implicitly benefits from a
multicore server CPU. To determine whether CPU capacity is sufficient for testing you can monitor the CPU
utilisation with HammerDB Metrics . CPU utilisation reaching 100% is an indication that the CPU on the load
generation server is limiting performance. Load generation memory requirements are dependent on the

operating system configuration (ulimit) and the number of virtual users created with each virtual user
requiring its own oracle client. Typically server sizing guidelines should be within the limits expected to
ǎǳǇǇƻǊǘ ŀ ǊŜŀƭ ǳǎŜǊ ŎƻǳƴǘΦ aǳƭǘƛǇƭŜ ƭƻŀŘ ƎŜƴŜǊŀǘƛƻƴ ǎŜǊǾŜǊǎ ŎƻƴƴŜŎǘŜŘ ƛƴ ŀ άƳŀǎǘŜǊ-ǎƭŀǾŜέ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ŀǊŜ
enabled within HammerDB to exceed the capacity of a single load generation client. HammerDB consumes
15MB of disk space and you will also need to have installed a compatible Oracle client. All Oracle database
installations include an Oracle client and you also have the option of installing the Oracle Instant Client for a
license free installation. The load generation server does not need to be running the same version of Oracle
as the SUT.

 SUT Database Server Configuration

The database server architecture to be tested must meet the standard requirements for an Oracle Database
Server. Oracle can be installed on any supported operating system, there is no restriction on the version of
Oracle that is required. To run a HammerDB OLTP test there are minimum SUT requirements in memory
and I/O (disk performance) determined by the capabilities of the CPUs installed to prevent these
components being a bottleneck on performance. For a configuration requiring the minimal level of memory
and I/O to maximize CPU utilization keying and thinking time should be set to FALSE (keying and thinking
time is detailed later in this guide). To achieve this you should aim to create a schema with approximately
200-250 warehouses per CPU socket so for example 400-500 warehouses for a 2 socket system and 800-
1000 for a 4 socket system. As long as it is not too small resulting in contention the schema size should not
significantly impact results. You should have sufficient memory to cache as much of your test schema in
memory as possible. If keying and thinking time is set to TRUE you will need a significantly larger schema
and number of virtual users to create a meaningful system load. Reductions in memory will place more
emphasis on the I/O performance of the tablespace containing the schema. If the db_cache_size is
sufficient most of the data will be cached during an OLTP test and I/O to the data area will be minimal. As a
consequence the key I/O dependency will be to the redo logs for both bandwidth and sequential write
latency. Modern PCIe SSDs when correctly configured have been shown to provide the capabilities to
sustain high performance redo.

http://hammerora.sourceforge.net/hammerdb_install_guide.pdf
http://hammerora.sourceforge.net/hammerdb_metrics.pdf
http://www.oracle.com/technetwork/database/features/instant-client/index-100365.html

3

Installation and Configuration

This sections describes the procedure to install and configure the Load Generation Server and the SUT
Database Server.

 Load Generation Server Installation

On the Load Generation Server refer to the dedicated HammerDB Installation Guide.

 Load Generation Server Configuration

 All of HammerDBΩǎ ǿƻǊƪƛƴƎ Řŀǘŀ Ŏŀƴ ōŜ ǎŜǘ ǳǎƛƴƎ ƳŜƴǳ ƻǇǘƛƻƴǎΦ IƻǿŜǾŜǊ if you wish in the
HammerDB home directory there is a configuration file called config.xml that is read on startup. In this
file you can preset your schema build and driver configurations by editing the xml file without having
to change the data manually. If your xml file is well formed your variables will be applied to
HammerDB when you selected the menu options.

<?xml version="1.0" encoding="utf - 8"?>

<hammerdb>

 <rdbms>Oracle</rdbms>

 <bm>TPC- C</bm>

<oracle>

 <service>

 <system_user>system</system_user>

 <system_password>manager</system_password>

 <instance>oracle</instance>

 </service>

 <tpcc>

 <schema>

 <count_ware>1</count_ware>

 <num_threads>1</num_threads>

 <tpcc_user>tpcc</tpcc_user>

 <tpcc_pass>tpcc</tpcc_pass>

 <tpcc_def_tab>tpcctab</tpcc_def_tab>

 <tpcc_ol_tab> tpcctab</tpcc_ol_tab>

 <tpcc_def_temp>temp</tpcc_def_temp>

 <plsql>0</plsql>

 <directory>

 </directory>

 <partition>false</partition>

 <tpcc_tt_compat>false</tpcc_tt_compat>

 </schema>

 <driver>

 <total_iterations>1000000</total_iterations>

 <raiseerror>false</raiseerror>

 <keyandthink>false</keyandthink>

 <checkpoint>false</checkpoint>

 <oradriver>standard</oradriver>

 <rampup>2</ rampup>

 <duration>5</duration>

 </driver>

 </tpcc>

Χ

 SUT Database Server Installation

You should have the Oracle database software installed and a test database created and running. During the

http://hammerora.sourceforge.net/hammerdb_install_guide.pdf

4

installation make a note of your system user password, you will need it for the test schema creation. You
may at your discretion use an existing database however please note that HammerDB load testing can drive
your system utilization to maximum levels and therefore testing an active production system is not
recommended.

After your database server is installed you should create a tablespace into which the test data will be
installed allowing disk space according to the guide previously in this document. For example the following
shows creating the tablespace in the ASM disk group DATA:

SQL> create bigfile tablespace tpc ctab datafile '+DATA' size 100 g;

 Network Connectivity

You must be able to connect from your load generation server to your SUT database server across the
network using Oracle TNS. This will involve successful configuration of your listener on the SUT database
server and the tnsnames.ora file on the load generation server. You can troubleshoot connectivity issues
using the ping, tnsping and sqlplus commands on the load generation client and the lsnrctl command on the
SUT database server. For example a successful tnsping test looks as follows:

[oracle@MERLIN ~]$ tnsping PDB1

TNS Ping Utility for Linux: Version 12.1.0.1.0 - Production o n 21 - MAY-

2014 05:40:49

Copyright (c) 1997, 2013, Oracle. All rights reserved.

Used parameter files:

/u01/app/oracle/product/12.1.0/dbhome_1/network/admin/sqlnet.ora

Used TNSNAMES adapter to resolve the alias

Attempting to contact (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)(HOST =

merlin)(PORT = 1521)) (CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_NAME

= pdb1)))

OK (30 msec)

Note that where the instant client is being used on the load generation server you should configure the
TNS_ADMIN environment variable to the location where the tnsnames.ora and sqlnet.ora files are installed.

When you have installed the load generation server and SUT database and have verified that you can
communicate between them using Oracle TNS you can proceed to building a test schema.

Creating the Test Schema

To create the OLTP test schema based on the TPC-C specification you will need to select which benchmark
and database you wish to use by choosing select benchmark from under the Options menu or under the
benchmark treeview. The initial settings are determined by the values in your config.xml file. If the
benchmark treeview shows another database then double-click on Oracle to show the option to switch to
Oracle and TPC-C, if Oracle and TPC-H is shown double-right-click to display the option to switch to TPC-C.

Select Oracle and TPC-C and press OK as shown in Figure 1.

5

Figure 1 Select Benchmark

To create the TPC-C schema select the TPC-C schema options menu tab from the benchmark treeview or the
options menu. This menu will change dynamically according to your chosen database.

Figure 2 Select Schema Options

If selected from the Options menu the schema options ǿƛƴŘƻǿ ƛǎ ŘƛǾƛŘŜŘ ƛƴǘƻ ǘǿƻ ǎŜŎǘƛƻƴǎΦ ¢ƘŜ ά.ǳƛƭŘ
hǇǘƛƻƴǎέ ǎŜŎǘƛƻƴ ŘŜǘŀƛƭǎ ǘƘŜ ƎŜƴŜǊŀƭ ƭƻƎƛƴ ƛƴŦƻǊƳŀǘƛƻƴ ŀƴŘ ǿƘŜǊŜ ǘƘŜ ǎŎƘŜƳŀ ǿƛƭƭ ōŜ ōǳƛƭǘ ŀƴŘ ǘƘŜ ά5ǊƛǾŜǊ
hǇǘƛƻƴǎέ ŦƻǊ ǘƘŜ 5ǊƛǾŜǊ {ŎǊƛǇǘ ǘƻ Ǌǳƴ ŀŦǘŜǊ ǘƘŜ ǎŎƘŜƳŀ ƛǎ ōǳƛƭǘΦ If selected from the benchmark treeview
only the ά.ǳƛƭŘ hǇǘƛƻƴǎέ are shown and these are the only options of importance at this stage. Note that in
any circumstance ȅƻǳ ŘƻƴΩǘ ƘŀǾŜ ǘƻ ǊŜōǳƛƭŘ ǘƘŜ ǎŎƘŜƳŀ ŜǾŜǊȅ ǘƛƳŜ ȅƻǳ ŎƘŀƴƎŜ ǘƘŜ ά5ǊƛǾŜǊ hǇǘƛƻƴǎέ, once
the schema has been built only the ά5ǊƛǾŜǊ hǇǘƛƻƴǎέ may need to be modified. CƻǊ ǘƘŜ ά.ǳƛƭŘ hǇǘƛƻƴǎέ Ŧill in

6

the values according to the database where the schema will be built.

Figure 3 Build Options

 Build Options

The Build Option values have the following meanings.

 Oracle Service Name

The Oracle Service Name is the service name that your load generation server will use to connect to the
database running on the SUT database server. You verified connectivity to this service name previously in
this document.

 System User

¢ƘŜ άǎȅǎǘŜƳέ ǳǎŜǊ or a user with system level privileges

 System User Password

¢ƘŜ ǎȅǎǘŜƳ ǳǎŜǊ ǇŀǎǎǿƻǊŘ ƛǎ ǘƘŜ ǇŀǎǎǿƻǊŘ ŦƻǊ ǘƘŜ άǎȅǎǘŜƳέ ǳǎŜǊ ȅƻǳ ŜƴǘŜǊŜŘ ŘǳǊƛƴƎ ŘŀǘŀōŀǎŜ ŎǊŜŀǘƛƻƴΦ ¢ƘŜ
system user already exists in all Oracle databases and has the necessary permissions to create the TPC-C
user.

 TPC-C User

The TPC-C user is the name of a user to be created that will own the TPC-C schema. This user can have any
name you choose but must not already exist and adhere to the standard rules for naming Oracle users. You
may if you wish run the schema creation multiple times and have multiple TPC-C schemas created with
ownership under a different user you create each time.

 TPC-C User Password

The TPC-C user password is the password to be used for the TPC-C user you create and must adhere to the
standard rules for Oracle user password. You will need to remember the TPC-C user name and password for

7

running the TPC-C driver script after the schema is built.

 TPC-C Default Tablespace

The TPC-C default tablespace is the tablespace that will be the default for the TPC-C user and therefore the
tablespace to be used for the schema creation. The tablespace must have sufficient free space for the
schema to be created.

 Order Line Tablespace

LŦ ǘƘŜ άbǳƳōŜǊ ƻŦ ²ŀǊŜƘƻǳǎŜǎέ ŀǎ ŘŜǎŎǊƛōŜŘ ōŜƭƻǿ ƛǎ ǎŜǘ ǘƻ нлл ƻǊ ƳƻǊŜ ǘƘŜƴ ǘƘŜ άtŀǊǘƛǘƛƻƴ hǊŘŜǊ [ƛƴŜ
¢ŀōƭŜέ ƻǇǘƛƻƴ becomes active. If this is selected then the option to select a different tablespace for the
Order Line table only becomes active. For high performance schemas this gives the option of using both a
separate tablespace and memory cache for the order line table with a different block size.

 TPC-C Temporary Tablespace

The TPC-C temporary tablespace is the temporary tablespace that already exists in the database to be used
by the TPC-C User.

 TimesTen Database Compatible

When selected this option means that the Oracle Service Name should be a TimesTen Data Source Name
and will grey out non-compatible options. See the Oracle TimesTen OLTP Load Testing Supplement for
details on configuring TimesTen tests.

 Partition Order Line Table

When more than 200 warehouses are selected this option uses Oracle partitioning to divide the Order Line
table into partitions of 100 warehouses each. Using partitioning enables scalability for high performance
schemas and should be considered with using a separate tablespace for the Order Line table.

 Number of Warehouses

The Number of Warehouses is selected by a slider. For fine-tuning you may click either side of the slider to
move the value by 1. You should set this value to number of warehouses you have chosen for your test
based on the guidance given previously in the section SUT Database Server Configuration.

 Virtual Users to Build Schema

The Virtual Users to Build Schema is the number of Virtual Users to be created on the Load Generation
Server that will complete your multi-threaded schema build. You should set this value to either the number
of warehouses you are going to create (You cannot set the number of threads lower than the number of
warehouses value) or the number of cores/Hyper-Threads on your Load Generation Server. If you have a
significantly larger core/Hyper-Thread count on your Database Server then also installing HammerDB locally
on this server as well to run the schema build can take advantage of the higher core count to run the build
more quickly.

 Use PL/SQL Server Side Load/Server Side Log Directory

The PL/SQL Server Side Load option enables you to use a build written in PL/SQL run entirely on the
Database Server with logging taking place in the Server Side Log Directory. However this build is single
threaded and the Client Side load offers significantly higher performance and therefore is the preferred
method for schema creation.

 Starting the Schema Build

When you have completed your Build Options click OK to store the values you have entered. For a

http://hammerora.sourceforge.net/hammerdb_timesten_oltp.pdf

8

permanent record the values can be entered directly into the config.xml file. On starting HammerDB the
schema options will already contain the values you have entered in the corresponding fields.

To begin the schema creation at the buttons in the top level window click the "Create TPC Schema" button
or select build from the treeview. Both are shown as three coloured boxes and "Create TPC Schema"
appears in the information box when moused over.

Figure 4 Create Schema

On clicking this button a dialogue box such as the one shown in Figure 5 appears.

Figure 5 Confirm Schema

When you click Yes HammerDB will login to your chosen service name with a monitor thread as the system
user and create the user with the password you have chosen. It will then log out and log in again as your

9

chosen user, create the tables and then load the item table data before waiting and monitoring the other
threads. The worker threads will wait for the monitor thread to complete its initial work. Subsequently the
worker threads will create and insert the data for their assigned warehouses as shown in figure 6. There are
no intermediate data files or manual builds required, HammerDB will both create and load your requested
data dynamically. Data is inserted in a batch format for optimal network performance.

Figure 6 Schema Building

When the workers are complete the monitor thread will create the indexes, stored procedures and gather
the statistics. When the schema build is complete Virtual User 1 will display the message TPCC SCHEMA
COMPLETE and all virtual users will show that they completed their action successfully as shown in figure 7.

10

Figure 7 Schema Build Complete

Press the button to destroy the virtual users as shown in figure 7 and clear the script editor as shown in
figure 8.

11

Figure 8 Schema Creation End

The TPC-C schema creation script is a standard HammerDB script like any other so you can save it, modify it
and re-run it just like any other HammerDB script. For example if you wish to create more than the 1-5000
warehouses available in the GUI you may notice that the last line in the script calls a procedure with all of
the options that you gave in the schema options. Therefore change the second value to any number you like
to create more warehouses, for example the following will create 10000 warehouses.

do_tpcc system oracle PDB2 10000 tpcc tpcc tpcctab tpcctab temp 0 /tmp false false 8

Similarly change any other value to modify your script. If you have made a mistake simply close the
application and run the following SQL to undo the user you have created.

SQL>dro p user tpcc cascade;

When you have created your schema you can verify the contents with SQL*PLUS or your favourite admin
tool as the newly created user.

SQL> select tname, tabtype from tab;

TNAME TABTYPE
------------------------- ----- -------
HISTORY TABLE
CUSTOMER TABLE
DISTRICT TABLE
ITEM TABLE
WAREHOUSE TABLE

12

STOCK TABLE
NEW_ORDER TABLE
ORDERS TABLE
ORDER_LINE TABLE

9 rows selected.

SQL> select * from warehouse;

 W_ID W_YTD W_TAX W_NAME W_STREET_1
---------- ---------- ---------- - --------- --------------------
W_STREET_2 W_CITY W_ W_ZIP
-------------------- -------------------- -- ---------
 1 773095764 .11 4R0mUe rM8f7zFYdx
JyiNY5zg1gQNBDO v2973cRoiFSJ0z OF 374311111

SQL> se lect index_name, index_type from ind;

INDEX_NAME INDEX_TYPE
------------------------------ ---------------------------
IORDL IOT - TOP
ORDERS_I1 NORMAL
ORDERS_I2 NORMAL
INORD IOT - TOP
STOCK_I1 NORMAL
WAREHOUSE_I1 NORMAL
ITEM_I1 NORMAL
DISTRICT_I1 NORMAL
CUSTOMER_I1 NORMAL
CUSTOMER_I2 NORMAL

10 rows selected.

SQL>

SQL> select object_name from user_procedures;

OBJECT_NAME

NEWORD
DELIVERY
PAYMENT
OSTAT
SLEV

You can also browse the stored procedures you have created by looking in the creation script. At this point
the data creation is complete and you are ready to start running a performance test. Before doing so it is
worth noting that the schema has been designed in order that you can run multiple tests and it will return
the same results. You therefore do not need to recreate your schema after every run for consistent results.
Conversely if you do wish to recreate your schema for such a reason as you have exhausted your available
tablespace space the results of tests against different sizes are comparable. You can monitor the amount of
space you have used in your schema with a statement such as follows:

SQL> select sum(bytes)/1024/1024 as MB from user_segments;

 MB

13

 838. 125

Pre-Testing and Planning
After schema creation but before you start running measured tests an important phase is pre-testing and
planning. Pre-testing is a phase ŀƭǎƻ ƪƴƻǿƴ ŀǎ ΨǘŜǎǘƛƴƎ ǘƘŜ ǘŜǎǘǎΩΣ ƛƴ ǘƘƛǎ ǇƘŀǎŜ ȅƻǳ ǾŜǊƛŦȅ ǘƘŀǘ ȅƻǳ ƘŀǾŜ ǘƘŜ
optimal system, operating system and Oracle configuration which you then document and hold consistent
for a series of tests. Pre-testing enables you to ensure that your configuration is suitable for testing and the
time invested will generate valid results. Pre-testing also enables you to gain familiarity with the HammerDB
ŘǊƛǾŜǊ ǎŎǊƛǇǘ ǎŜǘǘƛƴƎǎ ŀƴŘ Ŧƛƴŀƭƭȅ ǘƻ ΨǿŀǊƳ ǘƘŜ ŎŀŎƘŜΩ ōȅ having your schema data cached in the buffer cache
before beginning an extended sequence of tests. Once you are satisfied with your testing configuration you
should then thoroughly plan your measured tests to ensure that all of your tests and results are fully
documented.

To begin pre-testing select the TPC-C schema options menu tab from the top level Benchmark menu or the
Driver Script Options from the treeview as shown in Figure 9.

Figure 9 Select Schema Options

At this stage your focus is now on the options given under the section Driver Options as shown in Figure 10.

14

Figure 10 Driver Options

 Driver Options

Under the Driver Options section you have Oracle Service Name, System User, System User Password, TPC-C
User, TPC-C User Password and TimesTen Database Compatible options all identical to the options set for
the schema build.

 Oracle Service Name/System User Password

The Oracle Service Name and System User Password detailed under the Build Options of the Schema
Options page is shown as the systemconnect value in the Driver Script. When running the AWR Snapshot
Driver Script systemconnect defines the connect string for the system user to login to the database with
suitable privileges to take the AWR snapshots.

 Oracle Service Name/TPC-C User/TPC-User Password/TimesTen Database Compatible

The values of the Oracle Service Name, TPC-C User and TPC-User Password detailed under the Build Options
of the Schema Options page is shown as the connect value in the Driver Script. This value defines the
connect string for the user who owns the TPC-C schema. As long as you can connect to Oracle with
SQL*PLUS using exactly the same connect string then HammerDB will also be able to connect. If having
difficulty connecting with HammerDB then troubleshoot with the normal tools as described previously such
as tnsping to resolve the connectivity issues. See the TimesTen supplement for TimesTen configuration
details.

 TPC-C Driver Script

Under TPC-C Driver script you have the option of choosing either the Standard Driver Script or the AWR
Snapshot Driver Script. This choice will dynamically change the Driver Script that is loaded when the TPC-C
Driver Script menu option is chosen. The Standard Driver Script as shown in figure 11 is a script run by all
virtual users. This script should be chosen when you wish to create a load against the database and view the
transaction rate but do not wish to run a timed test or wish to time the tests manually yourself. The
Standard Driver Script may be run with Virtual User Output turned on, which will display all of the
information each virtual users processes or with Virtual User Output turned off to be able to observe the

15

transaction rate only. Your additional Driver Options choices are populated in the EDITABLE OPTIONS
section.

Figure 11 Standard Driver Script

Instead of the Standard Driver Script you can select the AWR Snapshot Driver Script. As shown in Figure 12
this produces a number of additional options. You should select the AWR Snapshot Driver Script when you
wish to run timed tests and have HammerDB time these tests, measure the results, report on an average
transaction rate for a period of time and generate AWR information for that test. With the AWR Snapshot
Driver Script the first virtual user will do the timing and generate the results with the additional virtual users
running the workload, therefore you should always select the number of desired virtual users + 1 when
running the AWR Snapshot Driver Script. For example if you wish to measure a load generated by two
virtual users you should select three virtual users before running the script. Additionally the AWR Snapshot
Driver Script is designed to be run with Virtual User Output enabled, this ensures that the information
gathered by the first virtual user on the transaction rates and AWR report numbers are correctly reported.
Whilst running the AWR Snapshot Driver Script virtual user output for the virtual users generating the load
is suppressed.

Figure 12 AWR Snapshot Driver Script

For both the Standard Driver Script and AWR Driver Script the further options selected within the Schema
Options window are entered automatically into the EDITABLE OPTIONS section of the driver script as

16

follows:

 Total Transactions per User

Total transactions per user is reported as total_iterations within the EDITABLE OPTIONS section of the driver
script. This value will set the number of transactions each virtual user will process before logging off. You
can use this value to determine how long the virtual user will remain active for. The length of time for
activity will depend upon the performance of the Database Server under test. A higher performing server
will process the defined number of transactions more quickly than a lower performing one.

It is important to draw the distinction between the total_iterations value and the Iterations value set in the
Virtual User Options window. The Iterations value in the Virtual User Options window determines the
number of times that a script will be run in its entireity. The total_iterations value is internal to the TPC-C
driver script and determines the number of times the internal loop is iterated ie

for {set it 0} {$it < $total_iterations} {incr it} { ... }

In other words if total_iterations is set to 1000 then the executing user will log on once execute 1000
transactions and then log off. If on the other hand Iterations in the Virtual User Options window is set to
1000 and total_iterations in the script set to 1 then the executing user will log on execute one transaction
and then log off 1000 times. For the TPC-C driver script I recommend only modifying the total_iterations
value.

 When running the AWR Snapshot Driver Script as the test is timed you should ensure that the number of
transactions is set to a suitably high vale to ensure that the virtual users do not complete their tests before
the timed test is complete, doing so will mean the you will be timing idle virtual users and the results will be
invalid. Consequently it is acceptable when running timed tests to set the Total Transactions per User to a
high value such as 1000000 (the default value) or more to ensure that the virtual users continue running for
a long period of time, When the test is complete you can stop the test running by stopping the virtual users.

 Exit on Oracle Error

Exit on Oracle Error is shown as the parameter RAISEERROR in the Driver Script. RAISEERROR impacts the
behaviour of an individual virtual user on detecting an Oracle error. If set to TRUE on detecting an Oracle
error the user will report the error into the HammerDB console and then terminate execution. If set to
FALSE the virtual user will ignore the error and proceed with executing the next transaction. It is therefore
important to be aware that if set to FALSE firstly if there has been a configuration error resulting in repeated
errors then the workload might not be reported accurately and secondly you may not be aware of any
occasional errors being reported as they are silently ignored. I recommend running pre-tests with
RAISEERROR set to TRUE to ensure a configuration is valid before setting it to FALSE for a measured test run.

 Keying and Thinking Time

Keying and Thinking Time is shown as KEYANDTHINK in the Driver Script. A good introduction to the
importance of keying and thinking time is to read the TPC-C specification. This parameter will have the
biggest impact on the type of workload that your test will take.

TIP: The most common configuration error is to run a test with Keying and Thinking Time set to False with
too many virtual users for the schema created. One virtual user without keying and thinking time will
generate a workload equivalent to many thousands of users with keying and thinking time enabled.

Keying and thinking time is an integral part of an official TPC-C test in order to simulate the effect of the

17

workload being run by a real user who takes time to key in an actual order and think about the output. If
KEYANDTHINK is set to TRUE each user will simulate this real user type workload. An official TPC-C
benchmark implements 10 users per warehouse all simulating this real user experience and it should
therefore be clear that the main impact of KEYANDTHINK being set to TRUE is that you will need a
significant number of warehouses and users in order to generate a meaningful workload and hence an
extensive testing infrastructure. The positive side is that when testing hundreds or thousands of virtual
users you will be testing a workload scenario that will be closer to a real production environment. Whereas
with KEYANDTHINK set to TRUE each user will execute maybe 2 or 3 transactions a minute you should not
underestimate the radical difference that setting KEYANDTHINK to FALSE will have on your workload.
Instead of 2 or 3 transactions each user will now execute tens of thousands of transactions a minute. Clearly
KEYANDTHINK will have a big impact on the number of virtual users and warehouses you will need to
configure to run an accurate workload, if this parameter is set to TRUE you will need at least hundreds or
thousands of virtual users and warehouses, if FALSE then you will need to begin testing with 1 or 2 threads,
building from here up to a maximum workload with the number of warehouses set to a level where the
users are not contending for the same data. A common error is to set KEYANDTHINK to FALSE and then
create hundreds of users for an initial test, this form of testing will only exhibit contention for data between
users and nothing about the potential of the system. If you do not have an extensive testing infrastructure
and a large number of warehouses configured then I recommend setting KEYANDTHINK to FALSE (whilst
remembering that you are not simulating a real TPC-C type test) and beginning your testing with 1 virtual
user building up the number of virtual users for each subsequent test in order to plot a transaction profile.

 Checkpoint when Complete

The Checkpoint when complete option is shown as CHECKPOINT in the Driver Script. This option is only
available in the AWR Snapshot Driver Script and causes the Virtual Users to finish running the test and
execute a full Oracle Checkpoint and log file switch on the database being tested when a test is complete.
For consistency between tests this option to do a checkpoint is strongly recommended. This value is of
particular use when running the AWR Snapshot script in Autopilot Mode. Oracle Checkpoints can occur for
a number of reasons one of which is for a log file switch (although it is dependent on database version and
configuration whether Oracle does a full checkpoint for a log file switch). When running a HammerDB test if
a checkpoint occurs the additional system utilisation for the DBWRn activity writing changes from the buffer
cache in memory to the database files can be intensive. You should therefore ensure that when running
comparative tests that the number of checkpoints during a test are consistent. It can be any number from
zero upwards but it is important to keep the number of checkpoints the same.

TIP: If you wish not to checkpoint at all during a test (for example if you are constrained on I/O) it is
essential that you size your redo logs large enough to complete a full test without generating more redo
than the size of a single redo log file. You can determine the redo rate per second from the Redo Size
section of the Load Profile your AWR report and use this value to calculate the redo generated for the
duration of test. For example if you determine that you generate 5 Gigabytes of redo per minute each redo
log file needs to be greater than 25 Gigabytes to prevent triggering a log file switch checkpoint during a test.
Additionally the number of log files are important. If the next log file in sequence is not active (refer to
v$LOG) a log file switch will not trigger a full checkpoint and therefore the DBWRn activity will be not be as
intensive as a full checkpoint until the next in sequence is active.

Choosing to checkpoint when complete causes the intensive activity related to a checkpoint to occur
outside of the time a test is conducted and does a log file switch resetting the redo back to the start of the
next logfile in the group for the next test. When running in Autopilot mode this ensures that you have

18

control over when Checkpoints will occur even though you are running tests unattended.

 Minutes of Rampup Time

The Minutes of Ramup Time is shown as rampup in the Driver Script. The rampup time defines the time in
minutes for the monitoring virtual user to wait for the virtual users running the workload to connect to the
database and build up the transaction rate by caching data in the database buffer cache before taking the
first snapshot and timing the test. The rampup time should be sufficiently long enough for a workload to
reach a steady transaction rate before the first snapshot is taken.

 Minutes for Test Duration

The Minutes for Test Duration is shown as duration in the Driver Script. The test duration defines the time
of the test measured as the time the monitor thread waits after the first snapshot before taking the second
one to signal the test is complete and the active virtual users to complete their workload.

 Mode Options

The mode value is taken from the operational mode setting set under the Mode Options menu tab under
the Mode menu. If set to Local or Master then the monitor thread takes snapshots, if set to Slave no
snapshots are taken. This is useful if multiple instances of HammerDB are running in Master and Slave mode
to ensure that only one instance takes the snapshots.

When you have completed defining the Schema Options click OK to save your values. As noted previously
under the section Load Generation Server Configuration you can also enter these values into the config.xml
file to save a permanent record of your values for pre-populating the values after restarting HammerDB.

 Loading the Driver Script

Once you have selected and saved your driver options under the Benchmark Menu select TPC-C and TPC-C
Driver Script or select Load from the treeview as shown in Figure 13.

19

Figure 13 Select Driver Script

This will populate the Script Editor window with the driver script shown in Figure 11 or 12 according to
whether the standard or AWR driver script is chosen. These scripts provide the interaction from the Load
Generation Server to the schema on the SUT Database Server. If you have correctly configured the
parameters in the Driver Options section you do not have to edit in the script. If you so choose however you
may also manually edit the values given in the EDITABLE OPTIONS section. Additionally the driver scripts are
regular HammerDB scripts and a copy may be saved externally and modified as you desire for a genuinely
Open Source approach to load testing.

 Pre-Test 1 Verifying the Schema

Figure 14 shows a successfully loaded Standard Driver Script which provides a useful first test against a
newly created TPC-C Schema.

20

Figure 14 TPC-C Driver Script

In this example we will create two virtual users and choose to display their output to verify the schema and
database configuration. To do this Under the Options menu or from the treeview as shown in Figure 15
select the Virtual User Options and enter the number 2. Also check the Show Output button to see what
your users are doing whilst the test is running. Note that displaying the output will reduce the overall level
of performance (although HammerDB is multi-threaded many Window display systems are not and a
display can only be updated by a single thread thereby limited performance) and click OK. Showing output
is OK here as it is running a pre-test and not a performance test.

Figure 15 Select Virtual Users

21

There are three other related options under the Virtual User Options dialogue, namely User Delay(ms),
Repeat Delay(ms) and Iterations. Iterations defines the number of times that HammerDB should execute a
script in its entirety. With regards to running the TPC-C driver script this can be thought of as the number of
times a Virtual User logs on to the database, runs the number of transactions you defined in Total
Transactions per User and logs off again. For example if Total Transactions per User was set to 1000 and the
Virtual Users Iterations was set to 10, the Virtual User would complete 10000 transactions in total logging
off and on between each run. Setting Total Transactions per User to 10000 and Virtual User Iterations to 1
would also complete 10,000 transactions per virtual user but all in one session. User Delay(ms) defines the
time to wait between each Virtual User starting its test and the Repeat Delay(ms) is the time that each
Virtual User will wait before running its next Iteration. For the TPC-C driver script the recommended
approach is to leave the Iterations and User and Repeat Delays at the default settings and only modify the
Total Transactions per User or total_iterations value inside the Driver Script. When you have completed the
selection press OK. Click the Create Virtual Users button or the Create Virtual User treeview option as
shown in Figure 16 to create the virtual users, they will be created but not start running yet.

Figure 16 Create Virtual Users

You can observe as shown in Figure 17 that the virtual users have been created but are showing a status of
idle. You can destroy the Virtual Users by pressing the Red Traffic light icon that has appeared in place of the
Create Virtual Users button. To begin the test press the button Run Virtual Users button as shown in Figure
17, the name of the button will appear in the information pane.

22

Figure 17 Virtual Users Created and Run

You can observe the Virtual User icon has changed to signify activity. The Virtual Users have logged on to
the database, you will be able to see their presence in V$SESSION for example

SQL> select username, program from v$session where username = 'TPCC';

USERNAME PROGRAM
------------------------------ --
TPCC wish8.6 @merlin (TNS V1 - V3)
TPCC wish8.6@merlin (TNS V1 - V3)

and are running transactions as can be observed in the Virtual User Output as shown in Figure 18.

23

Figure 18 Load Testing Running

When the Virtual Users have completed all of their designated transactions they will exit showing a positive
status as shown in Figure 19. Once the Virtual User is displaying this positive status it has logged off the
database and will not be seen in V$SESSION. The Virtual User is once again idle and not running
transactions. The Virtual User does not need to be destroyed and recreated to re-run the test from this
status. The Virtual Users can be destroyed to stop a running test.

24

Figure 19 Virtual Users Complete

If there is an error when running the Driver Script it will be reported in the Virtual User icon with the detail
of the error shown in the Console window. Figure 20 shows an example of an error, in this case it is an
Oracle error illustrating an unknown identifier in the connect string. The Virtual User is once again idle and
not running transactions. The Virtual User does not need to be destroyed and recreated to re-run the test
from this status.

25

Figure 20 Virtual User Error

At this stage in pre-testing the test configuration has been verified and it has been demonstrated that the
load generation server can log on to the SUT Database Server and run a test.

 Pre-Test 2 Single and Multiple Virtual User Throughput

Once the configuration has been verified the next stage is to focus upon performance. The best place to
start with verifying performance is to monitor the workload of a single Virtual User. To do this follow all of
the steps for Pre-Test 1 ensuring that you select the Standard Driver Script. Note that the AWR Snapshot
Driver Script is designed for multiple users with one Virtual User providing the monitoring capabilities for
the other Virtual Users. Consequently if one Virtual User is configured to run the AWR Snapshot Driver
Script it will result in one Virtual monitoring an idle workload which is almost certainly not the desired
outcome. Once the Standard Driver Script has been loaded configure a single Virtual User as shown in
Figure 21. Configure One Virtual user without selecting the Show Output check box (The reason for
suppressing output is described under Pre-Test 1).

26

Figure 21 One Virtual User

Note that a single Virtual User without output is the default configuration if you have not modified the
config.xml file and therefore creating the Virtual Users will give you this single Virtual Configuration without
specifically configuring the Virtual Users as shown in Figure 21. Figure 22 shows the single Virtual User
created and the Standard Driver script loaded.

Figure 22 Single Virtual User

Press the Run Virtual Users button as described previously to begin generating the Single User Throughput
test, the Virtual User icon will be updated to signify that the workload is running.

27

To observe performance during the test you can use the Transaction Counter. The Transaction Counter
options can be selected from the treeview or the options menu as shown in Figure 23.

Figure 23 TX Counter Options

This displays the Transaction Counter Options as shown in Figure 24.

Figure 24 Transaction Counter Options

 Transaction Counter Options

Under the Transaction Counter Options section you have the following choices:

Connect String

The Connect String must be a standard format Oracle connect string for a user with permissions to read the
V$SYSSTAT table, you can validate by logging on with this user using sql*plus. A typical choice is the SYSTEM
user.

Refresh Rate

The refresh rate defines the time in seconds between when the transaction counter will refresh its values.
Setting this value too low may impact the accuracy of the data reported by the Oracle database and the
default value of 10 seconds is a good choice for an accurate representation. Nevertheless this value is a
timed sample directly from the Oracle V$SYSSTAT table and should be used as an indication of throughput
rather than a precise measurement ς for precise measurement refer to the timed tests detailed further in
this guide.

TimesTen Database Compatible

The transaction counter is connecting to a TimesTen database.

RAC Global Transactions

The RAC Global Transactions checkbox determines whether values should be displayed only for the instance
to which the transaction counter is connected or whether it is to display values for the entire cluster.

Autorange Data Points

28

By default the Data Points in the transaction counter will be anchored to the data point Zero. By selecting
Autorange data points you enable the transaction counter to zoom in to show a finer detail of peaks and
troughs in your transaction data.

When you have completed the transaction counter options press OK to save your values and press the
Transaction Counter button as shown in Figure 25 to begin observing the transaction rate.

Figure 25 Start Transaction Counter

The transaction Counter will become active and start collecting throughput data as shown in figure 26.

29

Figure 26 Waiting for Data

After the first refresh time interval you will be able to observe the transaction counter updating according
to the throughput of your system. The actual throughput you observe for a single Virtual User will vary
according to the capabilities of your system, however typically you should be looking for values in the tens
of thousands. Additionally once the transaction rate reaches a steady state you should observe the
transaction counter maintaining a reasonably flat profile. Low transaction rates or excessive peaks and
troughs in the transaction counter should be investigated for system bottlenecks on throughput.

30

Figure 27 Virtual user Throughput

Once you are satisfied with the single Virtual User throughput close both the Transaction Counter and
destroy the Virtual Users also stopping the test by pressing both Red Traffic Light icons. You should also
proceed to pre-testing the throughput multiple Virtual Users. To do so repeat the testing you have done for
a single Virtual User however instead increase the value for the number of Virtual Users to run the test in
the Virtual User Options as shown in Figure 28.

Figure 28 Configuring Multiple Virtual Users

31

Similarly monitor the throughput for a higher number of Virtual Users as shown in Figure 29.

Figure 29 Running Multiple Virtual Users

 Planning and Preparation

Planning and Preparation is one of the most crucial stages of successful testing but is often overlooked.
Firstly you should fully document the configuration of your entire load testing environment including details
such as hardware, operating system versions and settings and Oracle version and parameters. Once you
have fully documented your configuration you should ensure that the configuration is not changed for an
entire series of measured tests. This takes discipline but is an essential component of conducting accurate
and measured tests. If you wish to change the configuration between tests to improve performance you
should do so as part of the pre-test phase and not for the measured tests. If you change any aspect of the
configuration you should conduct another full series of measured tests.

To plan your measured tests you should have a defined aim for what you wish to achieve and plan the tests
accordingly. Often a test project can fail for having an unclear definition for the aim of what is desired to be
achieved. Typically this aim will take the form of determining the performance characteristics of a server (or
server) however this can have many forms, for example generating a performance profile, determining the
maximum throughput, measuring transaction response times or determining the maximum number of
supported virtual users. The tests will vary according to the aim, for example it is relatively meaningless to
use a test without keying and thinking to determine the maximum number of supported virtual users
(because each virtual user can use the maximum performance of one core or thread), similarly enabling
keying and thinking time is not applicable to determining a performance profile. Alternative testing aims

32

can be to compare multiple configurations on the same platform, for example looking at the impact on
throughput of Virtualization, RAC or changing OS and Oracle parameters, the scope in this area for testing is
limitless.

In this guide we will focus upon one of the most common testing scenarios, to generate a performance
profile for server. This aim is used to identify for a given configuration of CPU, memory and I/O on a defined
OS and Oracle configuration the maximum number of transactions that the system can support. This is
tested for a given number of virtual users, starting with one virtual user scaling up to the maximum number
that the system can support. This approach ensures that the full capabilities of a multithreaded server are
tested. With this approach we will define our Virtual Users without keying and thinking time. The number
of cores/threads in this example on the SUT Database Server is 16, therefore we will prepare a simple
tracking spreadsheet to record the results of our tests as shown in figure 30.

Figure 30 Planning Spreadsheet

With the configuration documented, the aim defined and a method to track the results of the tests
prepared for our performance profile test project it is now possible to proceed to running timed tests with
the AWR Snapshot Driver Script.

 Running Timed Tests with the AWR Snapshot Driver Script

To run a timed and measured test there is an additional script to the Standard Driver Script called the AWR
Snapshot Driver Script that automates this functionality for you. The AWR (Automatic Workload Repository)
provides functionality within the Oracle Database to take snapshots of Oracle performance metrics and
report the change delta of these metrics taken between snapshots. HammerDB leverages the AWR to
automatically calculate the average transaction rate over a period of time and provide a comprehensive
performance report for the test corresponding to that transaction rate. Note that the AWR is a feature of
Oracle Enterprise Edition only, if using Oracle Standard Edition continue to follow this guide and a tip
further in this section will detail how one simple change to modify the Driver Script can make it compatible
with the features available at Standard Edition.

To select the AWR driver script, open the TPC-C Driver Options Window as described previously in this
guide. Your focus is upon the Driver Options in this Window, and it is important to reiterate that you do not
need to recreate the schema to modify the driver options or to change from using the Standard Driver
Script to the AWR Snapshot Driver Script or Vice Versa. Within the Driver Options shown in Figure 31, select
the AWR Snapshot Driver Script radio button.

33

Figure 31 AWR Snapshot Options

Once the AWR Snapshot Driver Script is selected this activates the options to choose to Checkpoint when
complete and to select the Minutes of Rampup Time and Minutes for Test Duration as described previously
in this guide. For a performance profile test you should plan to keep the Minutes of Rampup Time and the
Minutes for Test Duration consistent for a number of tests with an increasing number of Virtual Users. For
this reason you should plan to allocate sufficient rampup time for the higher number of Virtual Users at the
end of your test sequence as well as the smaller number at the start. When you have selected your options
click OK.

From under the Benchmark and TPC-C Menu select TPC-C Driver Script, this populates the Script Editor
Window as shown in Figure 32 with the AWR Snapshot Driver Script configured with your chosen options.

34

Figure 32 AWR Snapshot Driver Script

To change these options you can either change them in the Schema Options window and reload the driver
script or more advanced users can also change them directly in the Driver Script itself.

TIP: The AWR is a feature of the Oracle Enterprise Edition Database only. If you are using Oracle Standard
Edition the AWR functionality is not enabled. For this reason the AWR Snapshot Driver Script will run, it will
take snapshots and report the snapshot numbers however the number of transactions per minute reported
at the end of the test will always be zero and any AWR reports that you generate will be mostly blank.

However within Standard Edition Statspack is a functional equivalent to the AWR and you can make one
minor change to the AWR Snapshot Driver Script to make it compatible with Statspack. Firstly you need to
create the PERFSTAT schema which you can do by running the following as SYSDBA. Typically you will create
the schema within the SYSAUX tablespace. όbƻǘŜ ƻƴ [ƛƴǳȄκ¦bL· ȅƻǳ ǿƛƭƭ ǳǎŜ ŦƻǊǿŀǊŘ ǎƭŀǎƘ άκέ ŀƴŘ ƻƴ
²ƛƴŘƻǿǎ ōŀŎƪǎƭŀǎƘ ά\έ ŀǎ ŀ ǎŜǇŀǊŀǘƻǊύ

sql> @? \ rdbms \ admin \ spcreate.sql

If you wish to subsequently drop the schema you can do so as follows:

sql> @? \ rdbms \ admin \ spdrop.sql

Once the perfstat user has been created you can modify the AWR Snapshot Driver script to use statspack
instead as follows:

35

At Row 88 find the following row that takes the AWR snapshot.

set sql1 "BEGIN dbms_workload_repository.create_snapshot(); END;"

Comment out this row as follows

#set sql1 "BEGIN dbms_workload_repository.create_snapshot(); END;"

And add the following row directly below

set sql1 "BEGIN statspack. snap; END;"

Note that if the Driver Script is reloaded the change you have made will be lost so it is recommended to
save a copy of the Driver Script using the File -> Save Option to reload if required in your Statspack
environment.

When the script with this change is run HammerDB will now take Statspack Snapshots instead of AWR. You
can view these snapshots with the following command.

sql> @? \ rdbms \ admin \ spreport.sql

You may continue to follow this guide substituting statspack for AWR where necessary. However note that
the AWR Snapshot Driver Script will continue to report the names of the AWR Snapshots it has taken and
the transaction values from the AWR (i.e zero) as opposed to Statspack. You must therefore manually note
the numbers of the Statspack Snapshots you have taken and also manually use the Statspack report to

calculate your transaction rate from the Transactions: value in the Load Profile section.

To run the AWR Snapshot Driver Script you must configure the Virtual Users as you did with the Standard
Driver Script however there are two notable differences to observe. Firstly when running the AWR Snapshot
Driver Script one Virtual user will not run the Driver Script workload, instead this one Virtual User will
monitor the timing of the test, take the AWR snapshots and return the results. For this reason you should
configure your Virtual Users with a Virtual User + 1 approach. ie to measure the workload for 1 Virtual User
you should configure 2 Virtual Users, to measure the workload for 2 virtual Users you should configure 3
and so on. Additionally the AWR Snapshot Driver Script is designed to be run with the Virtual User output
enabled in order that you can view the Output from the Virtual User doing the monitoring, consequently
the output for the Virtual Users running the workload is suppressed. The Virtual User configuration for the
first test will look as Figure 33.

Figure 33 AWR Snapshot Virtual Users

Click OK to save the configuration. Click the Create Virtual Users button as shown previously in this guide

36

and Start the Virtual Users running. Note that the Virtual User output is now different as shown in Figure
34.

Figure 34 AWR Driver Script Running

The output shows that rather than reporting the outcome of every transaction the worker Virtual User in
this example Virtual User 2 reports that it is processing transactions, however the output is suppressed.
The Virtual User will print its message AFTER it has logged on and immediately BEFORE it runs its first
transaction. If this message has not been printed the session is still in the process of logging into the
database. You can check how this is proceeding on a Linux database server with a command such as follows
"ps -ef | grep -i local | wc -l" to display the number of connections created. Increasing the User Delay(ms)
value in the virtual user options can on some systems prevent a "login storm" and have all users logged on
and processing tranasctions more quickly. Your rampup time should allow enough time for all of the users
to be fully connected.

You will also be able to observe that in this example this single virtual User has logged on to the database
and is running the workload. You can also observe that the monitor Virtual User, in this example Virtual
User 1 is not running a workload but instead has logged on to measure the rampup time followed by taking
the first AWR Snapshot, measuring the timed test, taking the second AWR snapshot and reporting the
outcome before logging off and ending the monitor script. It is worthwhile reiterating therefore that for the
AWR Snapshot Driver Script you need to configure and run n+1 Virtual Users with the additional Virtual
User doing the monitoring and measuring. The sample output of this monitoring Virtual User is shown in
figure 35.

37

Figure 35 AWR Snapshot Result

The monitoring user reports the TEST RESULT of TPM and NOPM. TPM measures the number of Oracle
Transactions per minute and is not to be confused with the tpmC value from an official TPC-C benchmark.
NOPM reports the number of New Orders per minute and is used as a database independent statistic.
Consequently for example TPM cannot be used to compare the performance results of Oracle with MySQL
but NOPM can. In addition to the test report the monitoring user also reports the SNAPIDs that can be
used to generate an Oracle AWR performance report for the workload. If you have not chosen the
Checkpoint when Complete option you should manually press the red traffic light icon to stop the Virtual
User workload. You may if you wish also run the Transaction Counter during an AWR Snapshot Driver Script
test. When you have stopped the test enter your data into your reporting spreadsheet.

With the test complete and the values you recorded you should next generate the AWR report that
corresponds to the reported SNAPIDs, in this example 46 and 47.

Load Profile Per Sec ond Per Transaction

~~~~~~~~~~~~~~~            -- -------------    ----------------              

DB Time(s):                            0.9               0.0    

              DB CPU(s):               0.6               0.0  

      Redo size (bytes):       2,183,117.8           5,465.6  

  Logical read (blocks):          38,880.6              97.3  

          Block changes:          12,802.8              32.1  



38  

 

 Physical re ad (blocks):              10.4               0.0  

Physical write (blocks):             357.4               0.9  

       Read IO requests:               3.5               0.0  

      Write IO requests:             230.9               0.6  

           Read IO (MB):                0.1               0.0  

          Write IO (MB):               2.8               0.0  

             User calls:             314.0               0.8  

           Parses (SQL):             193.4               0.5  

      Hard parses (SQL):               4.1               0.0  

     SQL Work Area (MB):               0.4               0.0  

                 Logons:               1.6               0.0  

         Executes (SQL):           8,344.0              20.9  

              Rollbacks:               0.7               0.0  

           Transactions:             399.4  

 

In this example the number of transactions per second is 399.4. Multiplied by 60 (to convert transactions 
per second to minutes) returns 23964, the value that HammerDB reported.  

The next section that yƻǳ ǎƘƻǳƭŘ ŜȄŀƳƛƴŜ ƛǎ ǘƘŜ ά¢ƻǇ мл CƻǊŜƎǊƻǳƴŘ 9ǾŜƴǘǎέΣ CƻǊ ǘŜǎǘǎ ǿƛǘƘ ŀ ƭƻǿ ƴǳƳōŜǊ ƻŦ 
virtual users you should always look for the value CPU Time or DB CPU as the top timed event in the high 
percentage valueΦ ¸ƻǳǊ ƴŜȄǘ ǘƻǇ ǘƛƳŜŘ ŜǾŜƴǘ ǿƛƭƭ ǳǎǳŀƭƭȅ ōŜ άƭƻƎ ŦƛƭŜ ǎȅƴŎέ ŦƻǊ ǘƘŜ ǊŜŘƻ ƭƻƎ ǿǊƛǘŜǎ. The Top 
10 Foreground Events also give you the opportunity to diagnose any performance issues,  in the this 
example the log file switch completion event illustrates an issue that should be investigated with the 
configuration of the redo log files resulting in a number of waits of 44ms.  

 

Top 10 Foreground Events by Total Wait Time  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

 Total Wait Wait % DB

Event Waits Time (sec) Avg(ms) time Wait Class

------------------------------ ------------ ---------- ------- ------ ----------

DB CPU 186.6 66.8

log file sync 84,477 107.5 1 38.5 Commit

log file switch (checkpoint in 25 1.1 44 .4 Configurat

cursor: pin S wait on X 15 .4 28 .2 Concurrenc

db file scattered rea d 553 .4 1 .1 User I/O

rdbms ipc reply 29 .4 12 .1 Other

SQL*Net message to client 92,441 .3 0 .1 Network

db file sequential read 556 .2 0 .1 User I/O

PX Deq: Slave Session Stats 522 .2 0 .1 Other

control file parallel write 87 .1 1 .0 System I/O

--- ------

39

Scrolling down to the Wait Classes by Total Wait Time section you should be able to observe that over 90%
of the database time is spent under DB CPU. In this example there is potential for further tuning under
System I/O to improve throughput.

Wait Classes by Total Wait Time

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

                                                        Avg             Avg  

                                        Total Wait     Wait   % DB   Active  

Wait Class                  Waits       Time (sec)     (ms)   time Sessions  

----------------  ----------------  ----------------  --------  ------  --------  

DB CPU                                         187            66.8      0.6  

System I/O                107,879              155        1   55.4      0.5  

Commit                     84,479              107        1   38.5      0.4  

Configuration                  25                1       44     .4      0.0  

Other                       2,814                1        0     .3      0.0  

User I/O                    1,924                1        0     .3      0.0  

Concurrency                   373                1        1     .2      0.0  

Network                    92,441                0        0     .1      0.0  

 

Your examination of the AWR report should be sufficient to ensure that your test is valid and you are mostly 
using the system CPU to process your workload.  

Once you are satisfied with the test results, repeat the test with the next value in the number of Virtual 
Users in your sequence remembering to add one for the monitor thread.  Once this test is complete either 
repeat the process with the next value in the sequence or automate your testing with autopilot mode as 
detailed in the following section. With either method do this until you have completed your spreadsheet 
with all of the desired values for database performance.  

 Automating Tests with Autopilot Mode 

If you prefer to run all of your tests manually you do not need to use the Autopilot Mode. However if you 
wish to run your entire sequence of tests unattended then Autopilot Mode enables you to use your time 
most productively. It can help to understand Autopilot Mode as a feature that simulates the presence of a 
DBA instructed to run your desired sequence of tests at specified time intervals and report the entire results 
of all tests in one batch. To begin configuring Autopilot mode follow the steps described in the previous 
section for Running Timed Tests with the AWR Snapshot Driver Script up to the steps illustrated in Figures 
31 and 32. You only need to configure the correct driver script but not configure the Virtual Users, they will 
be configured automatically.  To do this select Autopilot Options from the either the Options menu or the 
treeview as shown in Figure 36.  



40  

 

 

Figure 36 Autopilot menu 

This shows the Autopilot Options menu as shown in Figure 37.  

 

Figure 37 Autopilot Options 

Configure the Autopilot options precisely in the same manner as you would use to instruct your Virtual DBA 
as follows: 

 Autopilot Disabled/Autopilot Enabled 

This Autopilot Disabled/Autopilot Enabled Radio buttons give you the option to select whether the 



41  

 

Autopilot button is enabled on the main window.  

 Minutes per Test in Virtual User Sequence 

The minutes for test duration defines the time interval between which your virtual DBA will create the 
Virtual Users, stop the test and create the next Virtual Users in the sequence. You should configure this 
value in relation to the Minutes for Ramup Time and Minutes for Test Duration given in the AWR Snapshot 
options shown in Figure 39. For example if the values in the test script are 2 and 5 minutes respectively then 
10 minutes for the Autopilot Options is a good value to allow the test to complete before the next test in 
the sequence is run. If the test overruns the time interval and the Virtual Users are still running the 
sequence will wait for the Virtual Users to complete before proceeding however note any pending output 
will be discarded and therefore for example if the the TPM and NOPM values have not been reported by the 
time the test is stopped they will not be reported at all.  

 Virtual User Sequence (Space Separated Values) 

The Virtual User Sequence defines the number of Virtual Users to be configured in order for a sequence of 
tests separated by the Minutes for Test Duration. For example as shown in Figure 46, firstly a test with 2 
Virtual Users will be run, then after 10 minutes a test with 3 Virtual Users will be run, then 5 Virtual Users 
and so on to the end of the sequence. Note that the default Values are given as odd numbers to account for 
the Monitoring Virtual User when running the AWR Snapshot Driver Script. Therefore in this example the 
actual Users running the workload will be 1, 2, 4, 8, 12, 16, 20 and 24.  

 Show Virtual User Output/Log Virtual User Output to Temp 

These values are exactly the same as set when defining the Virtual Users, the Autopilot Options gives you 
the opportunity to set them when configuring Autopilot Mode to ensure that you have a permanent record 
of the output of the tests that you run.  

 

 

TIP:  When running the AWR Snapshot Driver Script in Autopilot Mode it is recommended to enable 
Checkpoint when Complete in the AWR Snapshot options as part of the Driver Script options. This ensures 
that your tests are consistently checkpointed without you being in attendance. However take note that for 
high performance systems with sufficiently large redo logs the checkpoint may take as long or longer than 
the test itself and should be accounted for in the Minutes for Test duration Value defined in the Autopilot 
Options.  

 

 

Once your Autopilot Options are defined, press OK to save the values. Close down all running virtual Users 
and the transaction counter and press the Autopilot button as shown in Figure 38.  

 



42  

 

 

Figure 38 Start Autopilot 

You can now leave the autopilot mode to run your chosen sequence of tests without any further 
intervention. The Autopilot screen as shown in Figure 39 becomes active and reports your progress. In 
particular note the timer in the top right hand corner tracking the interval times at which your tests should 
be run.  

 



43  

 

 

Figure 39 Autopilot Screen 

The Autopilot will continue to run through your chosen sequence, creating virtual users and running the 
test in the test script as shown in Figure 40. 



44  

 

 

Figure 40 Autopilot Continuing 

The output of the first virtual user will also be reported to the autopilot output screen, additionally all 
output will be reported to the log file if you have chosen to write the output to one. If you have not chosen 
to use the HammerDB log file and have closed the autopilot output then it is necessary to use the data AWR 
snapshots to report the performance recorded during your tests.   

When you have finished your test sequence press the traffic light icon to end Autopilot Mode. This data is 
available for all of the tests you performed allowing you to collect all of your results and AWR reports at a 
single point in time after all tests are complete.   

 

 

TIP:  If you have a long continuous sequence of AWR reports to generate there is no need to manually 
create each AWR report, instead you can use a custom script such as follows to generate a SQL script to 
create all of the AWR reports for you: 
 
 #!/usr/bin/tclsh  

set tmpdir "."  

set filename [file join $tmpdir genreports.sql ]  

 if {[c atch {set report [open $filename w ]}]} {  

     error "Could not open report $filename"  

                } else {  

        puts $report " -- AWR REPORT GENERATOR" 



45  

 

                        }  

set start_snap_begin 1  

set end_snap_begin 9  

for { set loop $start_snap_b egin} {$loop <= $end_snap_begin} {incr loop 

2} {  

set begin_snap $loop  

set end_snap [ expr $loop + 1 ]  

puts $report "define  inst_num     = 1;"  

puts $report "define  num_days     = 14;"  

puts $report "define  inst_name    = 'ORCL ';"  

puts $report "define  db_name      = 'ORCL ';"  

puts $report "define  dbid         = 1365223133 ;"  

puts $report "define  report_type  = 'html';"  

puts $report "define  begin_snap   = $begin_snap;"  

puts $report "define  end_snap     = $end_snap;"  

puts $report "define  report_name  =  awrrpt_$begin_snap \ _$end_snap.html"  

puts $report "@@?/rdbms/admin/awrrpti"  

}  

close $report  

Copy the script into the HammerDB Script Editor Window and set the values of start_snap_begin and 

end_snap_begin to correspond to your test results.  For example set start_snap_begin 1 and 
set end_snap_begin 9 , will result in the reports for snapshots 1-2,3-4,5-6,7-8,9-10 being generated.   
Press the Test TCL Code as shown in Figure 41 to run the script with a single Virtual User.  

 



46  

 

Figure 41 AWR Report Generator 

In the HammerDB console display your chosen file name as shown in figure 42. 

 

Figure 42 Edit Report File 

The console editor will now display your AWR report SQL script for your chosen sequence of AWR reports. 
Either save the file or run the contents directly in a SQLPLUS session and it will generate all of your required 
AWR reports with one command instead of having to generate each report individually.  You can  also export 
and load your AWR reports between Databases using the $ORACLE_HOME/rdbms/admin/awrext.sql and 
awrload.sql scripts.  

 

 



47  

 

 

Figure 43 Report SQL Script 

You should now be equipped with all of the performance data you need to generate performance profiles 
and begin your analysis as described Introduction to Transactional (OLTP) Load Testing for all Databases 

 

Support and Questions 
For help use the HammerDB Sourceforge forum available at the HammerDB sourceforge project.  

 

http://hammerora.sourceforge.net/transactionintro.pdf

